
CWL-Airflow

Michael Kotliar, Andrey Kartashov, Artem Barski

Nov 18, 2021

CONTENTS:

1 Cite as 3

2 Note 5
2.1 Quick start . 5
2.2 How it works . 6

2.2.1 Keywords . 6
2.2.2 Concepts . 7

2.3 How to install . 8
2.3.1 Install requirements . 8
2.3.2 Install CWL-airflow . 8
2.3.3 Download portable version of CWL-airflow . 9

2.4 How to use . 9
2.4.1 Initial configuration . 9
2.4.2 Updating airflow.cfg . 10
2.4.3 Adding a pipeline . 11
2.4.4 Executing a pipeline . 11
2.4.5 Posting pipeline execution progress, statistics and results 12
2.4.6 Using an API . 14
2.4.7 Running CWL-Airflow with docker-compose . 16

2.5 What if is doesn’t work . 16
2.5.1 CWL-airflow is not found . 16
2.5.2 Docker is unable to pull images from the Internet . 16
2.5.3 Docker is unable to mount input files . 16
2.5.4 Missing DAGs in Airflow UI . 17
2.5.5 Workflow execution failed . 17
2.5.6 Fails to compile ruamel.yaml . 17
2.5.7 mysql_config not found . 18

HTTP Routing Table 19

i

ii

CWL-Airflow

Python package to extend Apache-Airflow 2.1.4 functionality with CWL v1.1 support.

CONTENTS: 1

https://www.python.org/downloads/release/python-377/
https://travis-ci.org/Barski-lab/cwl-airflow
https://coveralls.io/github/Barski-lab/cwl-airflow?branch=master
https://pepy.tech/project/cwl-airflow
https://airflow.apache.org
https://www.commonwl.org/v1.1/

CWL-Airflow

2 CONTENTS:

CHAPTER

ONE

CITE AS

Michael Kotliar, Andrey V Kartashov, Artem Barski, CWL-Airflow: a lightweight pipeline manager supporting Com-
mon Workflow Language, GigaScience, Volume 8, Issue 7, July 2019, giz084, https://doi.org/10.1093/gigascience/
giz084

3

https://doi.org/10.1093/gigascience/giz084
https://doi.org/10.1093/gigascience/giz084

CWL-Airflow

4 Chapter 1. Cite as

CHAPTER

TWO

NOTE

Current documentaion is still in progress. If you one of those who has just noticed typo in the word documentaion,
we need your Pull Requests

2.1 Quick start

We assume that you have already installed python 3.8, latest pip, latest setuptools and docker that has access to pull
images from the DockerHub. If something is missing or should be updated refer to the How to install or What if is
doesn’t work sections.

1. Install CWL-airflow

$ pip3 install cwl-airflow \
--constraint "https://raw.githubusercontent.com/Barski-lab/cwl-airflow/master/
→˓packaging/constraints/constraints-3.8.txt"

When using optional --constraint parameter you can limit dependencies to those versions that were tested
with your Python.

2. Configure CWL-airflow (for details refer to Initial configuration section)

$ cwl-airflow init

3. Get some workflows to run, for example from SciDAP

$ git clone https://github.com/datirium/workflows.git --recursive

4. To be able to use Airflow Webserver, create a new user following the example below

airflow users create \
--username admin \
--firstname firstname \
--lastname lastname \
--role Admin \
--email firstname@lastname.org

5. In a separate terminals start Airflow Webserver, Scheduler and our API

$ airflow scheduler
$ airflow webserver
$ cwl-airflow api

5

https://hub.docker.com/
https://github.com/datirium/workflows

CWL-Airflow

6. Schedule execution of a sample pipeline. Set the workflow number with --range

$ cwl-airflow test --suite workflows/tests/conformance_tests.yaml --range 1

7. Open Airflow Webserver (by default http://127.0.0.1:8080/admin/) and wait until Airflow Scheduler pick up a
new DAG (by default every 5 min) and execute it. On completion all results and temporary files will be
removed, so you can safely schedule other workflows by setting different values to --range parameter. Take a
look at the How to use section for more details.

2.2 How it works

2.2.1 Keywords

1. CWL descriptor file (aka pipeline or workflow) - YAML or JSON file or its parsed content that complies with
CWL v1.1 specification and describes inputs, outputs and sequence of steps to be executed.

2. Job file (aka job or running configuration) - YAML or JSON file or its parsed content that is used for initializing
workflow inputs with values. Job can optionally include 2 additional fields:

• tmp_folder - folder to keep temporary data that will be removed after successful workflow execution

• outputs_folder - folder to move generated results after successful workflow execution

If any of the abovementioned parameters was not set the default value will be derived from [cwl] section of
airflow.cfg. For additional details refer to Updating airflow.cfg section.

3. DAG - directed acyclic graph that describes workflow structure.

Note, for better understanding of CWL specification and its basic principles, please, refer to the official CWL User
Guide.

6 Chapter 2. Note

http://127.0.0.1:8080/admin/
https://www.commonwl.org/v1.1/
http://www.commonwl.org/user_guide/
http://www.commonwl.org/user_guide/

CWL-Airflow

2.2.2 Concepts

The CWL-airflow package extends Airflow’s functionality with the ability to parse and execute workflows written with
the CWL v1.1 specification. We defined 4 basic components — CWLJobDispatcher, CWLStepOperator, CWLJob-
Cleanup, and CWLDAG. The latter is a class for combining the tasks into a DAG that reflects the CWL workflow
structure. Every CWLStepOperator task corresponds to a workflow step and depends on others on the basis of the
workflow step inputs and outputs. CWLJobDisptacher is used to provide the pipeline with the input data. CWLJob-
Cleanup returns the calculated results to the output folder. Every new CWL workflow results in creation of a new
CWLDAG. If the new job is run with the same pipeline, it will not create a new CWLDAG, but run the old one.

Previously, in order to execute CWLDAG a file describing workflow-specific input parameters in JSON or YAML
format should have been placed in the special jobs folder. In the current version we removed the necessity for the
jobs folder, as the new CWLDAGs can be easily triggered with the required input parameters through the REST API,
Airflow UI or command line interface. In case someone needs to monitor a special folder for the new job files added,
it can be easily implemented as a separate standard for Airflow DAG.

2.2. How it works 7

CWL-Airflow

To add a new workflow, one should simply write a small python script (see example below) and place it into the DAGs
folder. Only two parameters are required to initialize a new CWLDAG: path to the workflow file and dag_id.

#!/usr/bin/env python3
from cwl_airflow.extensions.cwldag import CWLDAG
dag = CWLDAG(workflow="my_awesome_workflow.cwl", dag_id="my_awesome_dag")

There are only three functions that our CWLDAG is responsible for. First – to parse CWL file. Second – to validate
CWL syntax. Third – to create a DAG, that will have the same structure as our workflow.

2.3 How to install

2.3.1 Install requirements

Ubuntu 18.04.4 (Bionic Beaver)

• python3-dev

sudo apt-get install python3-dev

macOS 11.0.1 (Big Sur)

• Apple Command Line Tools

xcode-select --install

Both Ubuntu and macOS

• python 3.6 / 3.7 / 3.8

• docker (follow the installation guides)

• pip (follow the installation guides)

• setuptools

pip3 install -U setuptools

2.3.2 Install CWL-airflow

$ pip3 install cwl-airflow \
--constraint "https://raw.githubusercontent.com/Barski-lab/cwl-airflow/master/packaging/
→˓constraints/constraints-3.7.txt"

When using optional --constraint parameter you can limit dependencies to those versions that were tested with your
Python.

Optionally, extra dependencies can be provided by adding [mysql,celery,statsd] at the end of the command above.

• mysql - enables MySQL server support

• celery - enables Celery cluster support

8 Chapter 2. Note

https://docs.docker.com/engine/install/
https://pip.pypa.io/en/stable/installing/

CWL-Airflow

• statsd - enables StatsD metrics support

2.3.3 Download portable version of CWL-airflow

Alternatively to installation, the relocatable standalone Python3 with pre-installed CWL-Airfow can be downloaded
from the Releases section on GitHub.

Note, these are not cross-platform packages, so the version of OS should be the same as mentioned in the name of the
file. When extracted from archive, all executables can be found in the python3/bin_portable folder.

Similar packages for other versions of Ubuntu, Python and CWL-Airflow can be generated with the following com-
mands:

Ubuntu
defaults: Ubuntu 18.04, Python 3.6, CWL-Airflow master branch

$./packaging/portable/ubuntu/pack.sh [UBUNTU_VERSION] [PYTHON_VERSION] [CWL_AIRFLOW_
→˓VERSION]

macOS
package is always built for current macOS version
defaults: Python 3.8, CWL-Airflow master branch

$./packaging/portable/macos/pack.sh [PYTHON_VERSION] [CWL_AIRFLOW_VERSION]

2.4 How to use

2.4.1 Initial configuration

Before using CWL-airflow it should be configured with cwl-airflow init

$ cwl-airflow init --help

usage: cwl-airflow init [-h] [--home HOME] [--config CONFIG] [--upgrade]

optional arguments:
-h, --help show this help message and exit
--home HOME Set path to Airflow home directory. Default: first try

AIRFLOW_HOME then '~/airflow'
--config CONFIG Set path to Airflow configuration file. Default: first try

AIRFLOW_CONFIG then '[airflow home]/airflow.cfg'
--upgrade Upgrade old CWLDAG files to the latest format. Default:

False

Init command will run the following steps for the specified --home and --config parameters:

• Call airflow --help to create a default airflow.cfg

• Update airflow.cfg to hide paused DAGs, skip loading example DAGs and connections and do not pause
newly created DAGs. Also, we set our custom logging_config_class to split Airflow and CWL related logs
into the separate files. In case of upgrading from the previous version of CWL-Airflow that used Airflow < 2.0.0
to the latest one, airflow.cfg will be backuped and upgraded to fit Airflow 2.1.4. You will have to manually
make sure that all custom fields were properly copied to the new airflow.cfg

2.4. How to use 9

https://github.com/Barski-lab/cwl-airflow/releases

CWL-Airflow

• Call airflow db init to init/upgrade Airflow metadata database.

• If run with --upgrade, upgrade old CWLDAGs to correspond to the latest format, save original CWLDAGs
into deprecated_dags folder.

• Put clean_dag_run.py into the DAGs folder.

2.4.2 Updating airflow.cfg

For precise configuration the [cwl] section can be added to airflow.cfg. All of the parameters descibed below are
optional and will take their default values if not provided.

If job already included absolute paths for tmp_folder and outputs_folder the corresponent parameters from airflow.cfg
will be ignored.

In other situation, for example when running CWL-Airflow with docker-compose, one may need to set the exact
locations for tmp, outputs, inputs and pickle folders to allow their proper mounting to Docker container.

Also, following the abovementioned scenario, all input files required for workflow execution might be placed into
inputs_folder. At the same time, when using relative locations in the job file, all paths will be resolved based on the
same inputs_folder. For additional details refer to Running CWL-Airflow with docker-compose section.

[cwl]

Temp folder to keep intermediate workflow execution data.
Ignored if job already has tmp_folder set as absolute path.
If job has tmp_folder set as a relative path, it will be resolved based on this␣
→˓location.
Default: AIRFLOW_HOME/cwl_tmp_folder
tmp_folder =

Output folder to save workflow execution results.
Ignored if job already has outputs_folder set as absolute path.
If job has outputs_folder set as a relative path, it will be resolved based on this␣
→˓location.
Default: AIRFLOW_HOME/cwl_outputs_folder
outputs_folder =

Folder to keep input files.
If job has relative paths for input files they will be resolved based on this location.
Default: AIRFLOW_HOME/cwl_inputs_folder
inputs_folder =

Folder to keep pickled workflows for fast workflow loading.
Default: AIRFLOW_HOME/cwl_pickle_folder
pickle_folder =

Boolean parameter to force using docker for workflow step execution.
Default: True
use_container =

Boolean parameter to disable passing the current user id to "docker run --user".
Default: False
no_match_user =

10 Chapter 2. Note

CWL-Airflow

2.4.3 Adding a pipeline

Set absolute path to the workflow file

The easiest way to add a new pipeline to CWL-airflow is to put the following python script into your DAGs folder.
Here, workflow parameter is initialized with the absolute path to the CWL workflow file.

#!/usr/bin/env python3
from cwl_airflow.extensions.cwldag import CWLDAG
dag = CWLDAG(

workflow="/absolute/path/to/workflow.cwl",
dag_id="my_dag_name"

)

As CWLDAG class was inherited from Airflow’s DAG, additional arguments, such as default_args, can be provided
when calling class constructor.

default_args can also include cwl section similar to the one from airflow.cfg file described in Updating airflow.cfg
section. However, parameters from airflow.cfg will always have higher priority compared to those that were passed
in constructor.

Use zlib compressed workflow file content

Alternatively to file location, the value of workflow parameter can be initialized with base64 encoded zlib compressed
file content. Below is an example of script generating compressed workflow content.

from cwl_airflow.utilities.helpers import get_compressed
with open("workflow.cwl", "r") as input_stream:

print(get_compressed(input_stream))

Note, to add a new pipeline one can also use POST to /dags API endpoing. For additional details refer to Using an
API section.

A new pipeline can be run after Airflow Scheduler loads new DAG (by default if happens every 5 minutes).

2.4.4 Executing a pipeline

Using Airflow UI

The most convenient way to manually execute DAG is to trigger it from Airflow UI. Input parameters can be set in
the job section of the DAG run configuration as in the example below.

2.4. How to use 11

CWL-Airflow

Using Airflow CLI

Alternatively, DAGs can be triggered through the Airflow CLI with the JSON input paramerers file.

$ airflow trigger_dag --conf "{\"job\":$(cat ./bam-bedgraph-bigwig.json)}" bam-bedgraph-
→˓bigwig

Note, to trigger workflow execution one can also use POST to /dag_runs API endpoing. For additional details refer
to Using an API section.

2.4.5 Posting pipeline execution progress, statistics and results

To make CWL-Airflow post workflow executions progress, statistics and results process_report connection
should be added. Parameters can be adjusted based on the current needs following the example below.

$ airflow connections add process_report --conn-type http --conn-host localhost --conn-
→˓port 3070

In case CWL-Airflow failed to POST progress updates or workflow execution results, the corresponded records with the
prefixes post_progress__ and post_results__ will be added to the Airflow Variables. Later, when CWL-Airlfow
API run with --replay N argument, it will attemt to resend not delivered messages every N seconds. Workflow
execution statistics is sent as part of the progress report at the end of the pipeline execution regardless of whether it
finished with success or failure. If progress report is sent from the task, the statistics will be set to “”.

12 Chapter 2. Note

CWL-Airflow

On the example below, the workflow execution statistics includes total section with the start_date in isoformat.
This timestamp will be used as a reference point for all other start_date and end_date fields which are represented
in seconds.milliseconds format. All tmp_folder_size and outputs_folder_size are in kBytes.

{
'state': 'success',
'dag_id': 'star-index',
'run_id': 'ba46dd51-9c7d-4f92-adc5-503a812ddb6d',
'progress': 100,
'statistics':
{
'version': '1.0',
'total':
{
'tmp_folder_size': 3080904,
'outputs_folder_size': 1538044,
'start_date': '2021-01-28T20:55:03.258202+00:00',
'end_date': 60.715

},
'steps':
{
'CWLJobDispatcher':
{
'tmp_folder_size': 4,
'start_date': 2.69,
'end_date': 6.96

},
'CWLJobGatherer':
{
'tmp_folder_size': 0,
'start_date': 56.534,
'end_date': 58.718

},
'star_generate_indices':
{
'tmp_folder_size': 3080900,
'start_date': 10.657,
'end_date': 52.23

}
}

},
'error': '',
'logs': ''

}

2.4. How to use 13

CWL-Airflow

2.4.6 Using an API

Besides built-in experimental API from the Airflow Webserver, CWL-airflow provides extended API that supports
WES and can be run with cwl-airflow api

$ cwl-airflow api --help

usage: cwl-airflow api [-h] [--port PORT] [--host HOST]

optional arguments:
-h, --help show this help message and exit
--port PORT Set port to run API server. Default: 8081
--host HOST Set host to run API server. Default: 127.0.0.1
--simulation SIMULATION

Set path to the test suite file to simulate reports.
Pipelines won't get triggered in this mode.

--replay REPLAY
Retries to post undelivered progress and results reports to
the process_report connection every N seconds. If connection
is not set this parameter is ignored.
Default: do not resend not delivered reports.

Although, detailed API specification available on SwaggerHub, here we provide the most commonly used endpoints.

1. Get list of dags

GET /dags

Parameters:

Response example:

{
"dags": [

{
"dag_id": "string",
"tasks": [
"string"

]
}

]
}

2. Create new dag

POST /dags

Parameters:

Response example:

{
"dag_id": "string",
"dag_path": "string",

(continues on next page)

14 Chapter 2. Note

https://github.com/ga4gh/workflow-execution-service-schemas
https://app.swaggerhub.com/apis/michael-kotliar/cwl_airflow_workflow_execution_service/1.0.1

CWL-Airflow

(continued from previous page)

"cwl_path": "string"
}

3. Get list of dag_runs

GET /dag_runs

Parameters:

Enumerated values:

Response example:

{
"dag_runs": [
{
"dag_id": "string",
"run_id": "string",
"execution_date": "2019-08-24T14:15:22Z",
"start_date": "2019-08-24T14:15:22Z",
"state": "running",
"tasks": [
{
"id": "string",
"state": "scheduled"

}
],
"progress": 0

}
]

}

4. Trigger dag

POST /dag_runs

Parameters:

Response example:

{
"dag_id": "string",
"run_id": "string",
"execution_date": "2019-08-24T14:15:22Z",
"start_date": "2019-08-24T14:15:22Z",
"state": "running"

}

2.4. How to use 15

CWL-Airflow

2.4.7 Running CWL-Airflow with docker-compose

To start CWL-Airflow with LocalExecutor using docker-compose, run the following commands

cd ./packaging/docker_compose/local_executor
docker-compose up --build

Default values for mount volumes, mapped ports and other configurations can be found .env file in the same folder.

2.5 What if is doesn’t work

2.5.1 CWL-airflow is not found

Perhaps, you have installed it with --user option and your PATH variable doesn’t include your user based Python3
bin folder. Update PATH with the following command

$ export PATH="$PATH:`python3 -m site --user-base`/bin"

2.5.2 Docker is unable to pull images from the Internet

If you are using proxy, your Docker should be configured properly too. Refer to the official documentation.

2.5.3 Docker is unable to mount input files

When running Docker App on macOS there is a default list of directories that Docker has
permission to mount. If your input files are located in the directories that are not in-
cluded in this list, you should add them in Preferences / Resources / File Sharing.

16 Chapter 2. Note

https://docs.docker.com/config/daemon/systemd/#httphttps-proxy

CWL-Airflow

2.5.4 Missing DAGs in Airflow UI

If after adding a new DAG you don’t see it in Airflow UI, first check if Airflow Scheduler is running, then make sure
that dag_dir_list_interval parameter in airflow.cfg is not too big. By default, Airflow Scheduler will check for new
DAGs every 5 minutes.

2.5.5 Workflow execution failed

Make sure that your CWL descriptor file is correct and DAG was triggered with correct input parameters. You can
always check it with cwltool of the same version that is included in CWL-airflow package.

cwltool --debug WORKFLOW JOB

2.5.6 Fails to compile ruamel.yaml

Perhaps, you should update your setuptools and try to reinstall ruamel.yaml

2.5. What if is doesn’t work 17

CWL-Airflow

2.5.7 mysql_config not found

When running on Ubuntu with MySQL backend, it might be necessary to install libmysqlclient-dev

sudo apt-get install libmysqlclient-dev

18 Chapter 2. Note

HTTP ROUTING TABLE

/dag_runs
GET /dag_runs, ??
POST /dag_runs, ??

/dags
GET /dags, ??
POST /dags, ??
POST /dags/dag_runs, ??
POST /dags/{dag_id}/dag_runs, ??

/wes
GET /wes/runs, ??
GET /wes/runs/{run_id}, ??
GET /wes/runs/{run_id}/status, ??
GET /wes/service-info, ??
POST /wes/runs, ??
POST /wes/runs/{run_id}/cancel, ??

19

	Cite as
	Note
	Quick start
	How it works
	Keywords
	Concepts

	How to install
	Install requirements
	Ubuntu 18.04.4 (Bionic Beaver)
	macOS 11.0.1 (Big Sur)
	Both Ubuntu and macOS

	Install CWL-airflow
	Download portable version of CWL-airflow

	How to use
	Initial configuration
	Updating airflow.cfg
	Adding a pipeline
	Set absolute path to the workflow file
	Use zlib compressed workflow file content

	Executing a pipeline
	Using Airflow UI
	Using Airflow CLI

	Posting pipeline execution progress, statistics and results
	Using an API
	1. Get list of dags
	2. Create new dag
	3. Get list of dag_runs
	4. Trigger dag

	Running CWL-Airflow with docker-compose

	What if is doesn’t work
	CWL-airflow is not found
	Docker is unable to pull images from the Internet
	Docker is unable to mount input files
	Missing DAGs in Airflow UI
	Workflow execution failed
	Fails to compile ruamel.yaml
	mysql_config not found

	HTTP Routing Table

