

Welcome to CWL-Airflow’s documentation!

[image: _images/python-3.7-green.svg]
 [https://www.python.org/downloads/release/python-377/][image: _images/License-Apache%202.0-blue.svg]
 [https://www.apache.org/licenses/LICENSE-2.0][image: _images/cwl-airflow.svg]
 [https://travis-ci.org/Barski-lab/cwl-airflow][image: _images/badge.svg]
 [https://coveralls.io/github/Barski-lab/cwl-airflow?branch=master][image: _images/cwl-airflow1.svg]
 [https://pepy.tech/project/cwl-airflow]Python package to extend Apache-Airflow 2.1.4 [https://airflow.apache.org] functionality with CWL v1.1 [https://www.commonwl.org/v1.1/] support.

 Quick start

Quick start

We assume that you have already installed python 3.8, latest pip, latest setuptools
and docker that has access to pull images from the DockerHub [https://hub.docker.com/].
If something is missing or should be updated refer to the How to install
or What if is doesn’t work sections.

	Install CWL-airflow

$ pip3 install cwl-airflow \
--constraint "https://raw.githubusercontent.com/Barski-lab/cwl-airflow/master/packaging/constraints/constraints-3.8.txt"

When using optional --constraint parameter you can limit dependencies to those versions that were tested with your Python.

	Configure CWL-airflow (for details refer to Initial configuration section)

$ cwl-airflow init

	Get some workflows to run, for example from SciDAP [https://github.com/datirium/workflows]

$ git clone https://github.com/datirium/workflows.git --recursive

	To be able to use Airflow Webserver, create a new user following the example below

airflow users create \
--username admin \
--firstname firstname \
--lastname lastname \
--role Admin \
--email firstname@lastname.org

	In a separate terminals start Airflow Webserver, Scheduler and our API

$ airflow scheduler
$ airflow webserver
$ cwl-airflow api

	Schedule execution of a sample pipeline. Set the workflow number with --range

$ cwl-airflow test --suite workflows/tests/conformance_tests.yaml --range 1

	Open Airflow Webserver (by default http://127.0.0.1:8080/admin/) and wait until Airflow Scheduler pick up a new DAG (by default every 5 min) and execute it. On completion all results and temporary files will be removed, so you can safely schedule other workflows by setting different values to --range parameter. Take a look at the How to use section for more details.

[image: ../_images/screen.png]

 How it works

How it works

Keywords

	CWL descriptor file (aka pipeline or workflow) - YAML or JSON file or its parsed content that complies with CWL v1.1 [https://www.commonwl.org/v1.1/] specification and describes inputs, outputs and sequence of steps to be executed.

	Job file (aka job or running configuration) - YAML or JSON file or its parsed content that is used for initializing workflow inputs with values. Job can optionally include 2 additional fields:

	tmp_folder - folder to keep temporary data that will be removed after successful workflow execution

	outputs_folder - folder to move generated results after successful workflow execution

If any of the abovementioned parameters was not set the default value will be derived from [cwl] section of airflow.cfg. For additional details refer to Updating airflow.cfg section.

	DAG - directed acyclic graph that describes workflow structure.

Note, for better understanding of CWL specification and its basic principles, please, refer to the official CWL User Guide [http://www.commonwl.org/user_guide/].

Concepts

The CWL-airflow package extends Airflow’s functionality with the ability to parse and execute workflows written with the CWL v1.1 specification. We defined 4 basic components — CWLJobDispatcher, CWLStepOperator, CWLJobCleanup, and CWLDAG. The latter is a class for combining the tasks into a DAG that reflects the CWL workflow structure. Every CWLStepOperator task corresponds to a workflow step and depends on others on the basis of the workflow step inputs and outputs. CWLJobDisptacher is used to provide the pipeline with the input data. CWLJobCleanup returns the calculated results to the output folder. Every new CWL workflow results in creation of a new CWLDAG. If the new job is run with the same pipeline, it will not create a new CWLDAG, but run the old one.

Previously, in order to execute CWLDAG a file describing workflow-specific input parameters in JSON or YAML format should have been placed in the special jobs folder. In the current version we removed the necessity for the jobs folder, as the new CWLDAGs can be easily triggered with the required input parameters through the REST API, Airflow UI or command line interface. In case someone needs to monitor a special folder for the new job files added, it can be easily implemented as a separate standard for Airflow DAG.

[image: ../_images/scheme.jpg]

To add a new workflow, one should simply write a small python script (see example below) and place it into the DAGs folder. Only two parameters are required to initialize a new CWLDAG: path to the workflow file and dag_id.

#!/usr/bin/env python3
from cwl_airflow.extensions.cwldag import CWLDAG
dag = CWLDAG(workflow="my_awesome_workflow.cwl", dag_id="my_awesome_dag")

There are only three functions that our CWLDAG is responsible for. First – to parse CWL file. Second – to validate CWL syntax. Third – to create a DAG, that will have the same structure as our workflow.

 How to install

How to install

Install requirements

Ubuntu 18.04.4 (Bionic Beaver)

	python3-dev

sudo apt-get install python3-dev

macOS 11.0.1 (Big Sur)

	Apple Command Line Tools

xcode-select --install

Both Ubuntu and macOS

	python 3.6 / 3.7 / 3.8

	docker (follow the installation guides [https://docs.docker.com/engine/install/])

	pip (follow the installation guides [https://pip.pypa.io/en/stable/installing/])

	setuptools

pip3 install -U setuptools

Install CWL-airflow

$ pip3 install cwl-airflow \
--constraint "https://raw.githubusercontent.com/Barski-lab/cwl-airflow/master/packaging/constraints/constraints-3.7.txt"

When using optional --constraint parameter you can limit dependencies to those versions that were tested with your Python.

Optionally, extra dependencies can be provided by adding [mysql,celery,statsd] at the end of the command above.

	mysql - enables MySQL server support

	celery - enables Celery cluster support

	statsd - enables StatsD metrics support

Download portable version of CWL-airflow

Alternatively to installation, the relocatable standalone Python3 with pre-installed CWL-Airfow can be downloaded from the Releases [https://github.com/Barski-lab/cwl-airflow/releases] section on GitHub.

Note, these are not cross-platform packages, so the version of OS should be the same as mentioned in the name of the file.
When extracted from archive, all executables can be found in the python3/bin_portable folder.

Similar packages for other versions of Ubuntu, Python and CWL-Airflow can be generated with the following commands:

Ubuntu
defaults: Ubuntu 18.04, Python 3.6, CWL-Airflow master branch

$./packaging/portable/ubuntu/pack.sh [UBUNTU_VERSION] [PYTHON_VERSION] [CWL_AIRFLOW_VERSION]

macOS
package is always built for current macOS version
defaults: Python 3.8, CWL-Airflow master branch

$./packaging/portable/macos/pack.sh [PYTHON_VERSION] [CWL_AIRFLOW_VERSION]

 How to use

How to use

Initial configuration

Before using CWL-airflow it should be configured with cwl-airflow init

$ cwl-airflow init --help

usage: cwl-airflow init [-h] [--home HOME] [--config CONFIG] [--upgrade]

optional arguments:
 -h, --help show this help message and exit
 --home HOME Set path to Airflow home directory. Default: first try
 AIRFLOW_HOME then '~/airflow'
 --config CONFIG Set path to Airflow configuration file. Default: first try
 AIRFLOW_CONFIG then '[airflow home]/airflow.cfg'
 --upgrade Upgrade old CWLDAG files to the latest format. Default:
 False

Init command will run the following steps for the specified --home and --config parameters:

	Call airflow --help to create a default airflow.cfg

	Update airflow.cfg to hide paused DAGs, skip loading example DAGs and connections and do not pause newly created DAGs. Also, we set our custom logging_config_class to split Airflow and CWL related logs into the separate files. In case of upgrading from the previous version of CWL-Airflow that used Airflow < 2.0.0 to the latest one, airflow.cfg will be backuped and upgraded to fit Airflow 2.1.4. You will have to manually make sure that all custom fields were properly copied to the new airflow.cfg

	Call airflow db init to init/upgrade Airflow metadata database.

	If run with --upgrade, upgrade old CWLDAGs to correspond to the latest format, save original CWLDAGs into deprecated_dags folder.

	Put clean_dag_run.py into the DAGs folder.

Updating airflow.cfg

For precise configuration the [cwl] section can be added to airflow.cfg. All of the parameters descibed below are optional and will take their default values if not provided.

If job already included absolute paths for tmp_folder and outputs_folder the corresponent parameters from airflow.cfg will be ignored.

In other situation, for example when running CWL-Airflow with docker-compose, one may need to set the exact locations for tmp, outputs, inputs and pickle folders to allow their proper mounting to Docker container.

Also, following the abovementioned scenario, all input files required for workflow execution might be placed into inputs_folder. At the same time, when using relative locations in the job file, all paths will be resolved based on the same inputs_folder. For additional details refer to Running CWL-Airflow with docker-compose section.

[cwl]

Temp folder to keep intermediate workflow execution data.
Ignored if job already has tmp_folder set as absolute path.
If job has tmp_folder set as a relative path, it will be resolved based on this location.
Default: AIRFLOW_HOME/cwl_tmp_folder
tmp_folder =

Output folder to save workflow execution results.
Ignored if job already has outputs_folder set as absolute path.
If job has outputs_folder set as a relative path, it will be resolved based on this location.
Default: AIRFLOW_HOME/cwl_outputs_folder
outputs_folder =

Folder to keep input files.
If job has relative paths for input files they will be resolved based on this location.
Default: AIRFLOW_HOME/cwl_inputs_folder
inputs_folder =

Folder to keep pickled workflows for fast workflow loading.
Default: AIRFLOW_HOME/cwl_pickle_folder
pickle_folder =

Boolean parameter to force using docker for workflow step execution.
Default: True
use_container =

Boolean parameter to disable passing the current user id to "docker run --user".
Default: False
no_match_user =

Adding a pipeline

Set absolute path to the workflow file

The easiest way to add a new pipeline to CWL-airflow is to put the following python script into your DAGs folder. Here, workflow parameter is initialized with the absolute path to the CWL workflow file.

#!/usr/bin/env python3
from cwl_airflow.extensions.cwldag import CWLDAG
dag = CWLDAG(
 workflow="/absolute/path/to/workflow.cwl",
 dag_id="my_dag_name"
)

As CWLDAG class was inherited from Airflow’s DAG, additional arguments, such as default_args, can be provided when calling class constructor.

default_args can also include cwl section similar to the one from airflow.cfg file described in Updating airflow.cfg section. However, parameters from airflow.cfg will always have higher priority compared to those that were passed in constructor.

Use zlib compressed workflow file content

Alternatively to file location, the value of workflow parameter can be initialized with base64 encoded zlib compressed file content. Below is an example of script generating compressed workflow content.

from cwl_airflow.utilities.helpers import get_compressed
with open("workflow.cwl", "r") as input_stream:
 print(get_compressed(input_stream))

Note, to add a new pipeline one can also use POST to /dags API endpoing. For additional details refer to Using an API section.

A new pipeline can be run after Airflow Scheduler loads new DAG (by default if happens every 5 minutes).

Executing a pipeline

Using Airflow UI

The most convenient way to manually execute DAG is to trigger it from Airflow UI. Input parameters can be set in the job section of the DAG run configuration as in the example below.

[image: ../_images/trigger_1.jpg]
[image: ../_images/trigger_2.jpg]

Using Airflow CLI

Alternatively, DAGs can be triggered through the Airflow CLI with the JSON input paramerers file.

$ airflow trigger_dag --conf "{\"job\":$(cat ./bam-bedgraph-bigwig.json)}" bam-bedgraph-bigwig

Note, to trigger workflow execution one can also use POST to /dag_runs API endpoing. For additional details refer to Using an API section.

Posting pipeline execution progress, statistics and results

To make CWL-Airflow post workflow executions progress, statistics and results process_report connection should be added. Parameters can be adjusted based on the current needs following the example below.

$ airflow connections add process_report --conn-type http --conn-host localhost --conn-port 3070

In case CWL-Airflow failed to POST progress updates or workflow execution results, the corresponded records with the prefixes post_progress__ and post_results__ will be added to the Airflow Variables. Later, when CWL-Airlfow API run with --replay N argument, it will attemt to resend not delivered messages every N seconds.
Workflow execution statistics is sent as part of the progress report at the end of the pipeline execution regardless of whether it finished with success or failure. If progress report is sent from the task, the statistics will be set to “”.

On the example below, the workflow execution statistics includes total section with the start_date in isoformat. This timestamp will be used as a reference point for all other start_date and end_date fields which are represented in seconds.milliseconds format. All tmp_folder_size and outputs_folder_size are in kBytes.

{
 'state': 'success',
 'dag_id': 'star-index',
 'run_id': 'ba46dd51-9c7d-4f92-adc5-503a812ddb6d',
 'progress': 100,
 'statistics':
 {
 'version': '1.0',
 'total':
 {
 'tmp_folder_size': 3080904,
 'outputs_folder_size': 1538044,
 'start_date': '2021-01-28T20:55:03.258202+00:00',
 'end_date': 60.715
 },
 'steps':
 {
 'CWLJobDispatcher':
 {
 'tmp_folder_size': 4,
 'start_date': 2.69,
 'end_date': 6.96
 },
 'CWLJobGatherer':
 {
 'tmp_folder_size': 0,
 'start_date': 56.534,
 'end_date': 58.718
 },
 'star_generate_indices':
 {
 'tmp_folder_size': 3080900,
 'start_date': 10.657,
 'end_date': 52.23
 }
 }
 },
 'error': '',
 'logs': ''
}

Using an API

Besides built-in experimental API from the Airflow Webserver, CWL-airflow provides extended API that supports WES [https://github.com/ga4gh/workflow-execution-service-schemas] and can be run with cwl-airflow api

$ cwl-airflow api --help

usage: cwl-airflow api [-h] [--port PORT] [--host HOST]

optional arguments:
 -h, --help show this help message and exit
 --port PORT Set port to run API server. Default: 8081
 --host HOST Set host to run API server. Default: 127.0.0.1
 --simulation SIMULATION
 Set path to the test suite file to simulate reports.
 Pipelines won't get triggered in this mode.
 --replay REPLAY
 Retries to post undelivered progress and results reports to
 the process_report connection every N seconds. If connection
 is not set this parameter is ignored.
 Default: do not resend not delivered reports.

Although, detailed API specification available on SwaggerHub [https://app.swaggerhub.com/apis/michael-kotliar/cwl_airflow_workflow_execution_service/1.0.1], here we provide the most commonly used endpoints.

1. Get list of dags

GET /dags

Parameters:

	Name
	In
	Type
	Required
	Description

	dag_ids
	query
	array[string]
	false
	Dag identifiers

Response example:

{
 "dags": [
 {
 "dag_id": "string",
 "tasks": [
 "string"
]
 }
]
}

2. Create new dag

POST /dags

Parameters:

	Name
	In
	Type
	Required
	Description

	dag_id
	query
	string
	false
	Dag identifier

	body
	body
	object
	false
	none

	workflow
	body
	string(binary)
	false
	CWL workflow file with embedded tools and all other dependencies

	workflow_content
	body
	string
	false
	base64 encoded zlib compressed workflow content

Response example:

{
 "dag_id": "string",
 "dag_path": "string",
 "cwl_path": "string"
}

3. Get list of dag_runs

GET /dag_runs

Parameters:

	Name
	In
	Type
	Required
	Description

	dag_id
	query
	string
	false
	Dag identifier

	run_id
	query
	string
	false
	Run identifier

	execution_date
	query
	string(date-time)
	false
	Execution date

	state
	query
	string
	false
	Dag run state

Enumerated values:

	Parameter
	Value

	state
	running

	state
	success

	state
	failed

Response example:

{
 "dag_runs": [
 {
 "dag_id": "string",
 "run_id": "string",
 "execution_date": "2019-08-24T14:15:22Z",
 "start_date": "2019-08-24T14:15:22Z",
 "state": "running",
 "tasks": [
 {
 "id": "string",
 "state": "scheduled"
 }
],
 "progress": 0
 }
]
}

4. Trigger dag

POST /dag_runs

Parameters:

	Name
	In
	Type
	Required
	Description

	dag_id
	query
	string
	true
	Dag identifier

	run_id
	query
	string
	false
	Run identifier

	conf
	query
	string
	false
	Run configuration (JSON-formatted string)

Response example:

{
 "dag_id": "string",
 "run_id": "string",
 "execution_date": "2019-08-24T14:15:22Z",
 "start_date": "2019-08-24T14:15:22Z",
 "state": "running"
}

Running CWL-Airflow with docker-compose

To start CWL-Airflow with LocalExecutor using docker-compose, run the following commands

cd ./packaging/docker_compose/local_executor
docker-compose up --build

Default values for mount volumes, mapped ports and other configurations can be found .env file in the
same folder.

 What if is doesn’t work

What if is doesn’t work

CWL-airflow is not found

Perhaps, you have installed it with --user option and your PATH
variable doesn’t include your user based Python3 bin folder.
Update PATH with the following command

$ export PATH="$PATH:`python3 -m site --user-base`/bin"

Docker is unable to pull images from the Internet

If you are using proxy, your Docker should be configured properly too.
Refer to the official documentation [https://docs.docker.com/config/daemon/systemd/#httphttps-proxy].

Docker is unable to mount input files

When running Docker App on macOS there is a default list of directories that Docker has permission to mount. If your input files are located in the directories that are not included in this list, you should add them in Preferences / Resources / File Sharing.
[image: ../_images/docker.png]

Missing DAGs in Airflow UI

If after adding a new DAG you don’t see it in Airflow UI, first check if Airflow Scheduler is running, then make sure that dag_dir_list_interval parameter in airflow.cfg is not too big. By default, Airflow Scheduler will check for new DAGs every 5 minutes.

Workflow execution failed

Make sure that your CWL descriptor file is correct and DAG was triggered with correct input parameters. You can always check it with cwltool of the same version that is included in CWL-airflow package.

cwltool --debug WORKFLOW JOB

Fails to compile ruamel.yaml

Perhaps, you should update your setuptools and try to reinstall ruamel.yaml

mysql_config not found

When running on Ubuntu with MySQL backend, it might be necessary to install libmysqlclient-dev

sudo apt-get install libmysqlclient-dev

 HTTP Routing Table

 HTTP Routing Table

 /dag_runs |
 /dags |
 /wes

 		 	

 		
 /dag_runs	

 	
 	
 GET /dag_runs	
 Returns list of dag_runs by dag_id, run_id, execution_date, state.

 	
 	
 POST /dag_runs	
 Creates new dag_run for dag_id with optional run_id and conf

 		 	

 		
 /dags	

 	
 	
 GET /dags	
 Returns list of dags by dag_ids.

 	
 	
 POST /dags	
 Creates new dag with dag_id from the attached workflow.cwl file or its compressed content.

 	
 	
 POST /dags/dag_runs	
 Combined logic from /dags and /dag_runs POSTs

 	
 	
 POST /dags/{dag_id}/dag_runs	
 Creates new dag_run for dag_id with optional run_id and conf

 		 	

 		
 /wes	

 	
 	
 GET /wes/runs	
 List the workflow runs.

 	
 	
 GET /wes/runs/{run_id}	
 Get detailed info about a workflow run.

 	
 	
 GET /wes/runs/{run_id}/status	
 Get quick status info about a workflow run.

 	
 	
 GET /wes/service-info	
 Get information about Workflow Execution Service.

 	
 	
 POST /wes/runs	
 Run a workflow.

 	
 	
 POST /wes/runs/{run_id}/cancel	
 Cancel a running workflow.

 Index

Index

 API

API

	
GET /dags

	Returns list of dags by dag_ids.

Runs airflow list_tasks for every dag_id in dag_ids. If dag_ids is None, process all dags.

	Query Parameters

	
	dag_ids (array) – Dag identifiers

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Filtered by dag_ids list of dags.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request is malformed.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	dags[].dag_id (string) –

	dags[].tasks[] (string) –

	
POST /dags

	Creates new dag with dag_id from the attached workflow.cwl file or its compressed content.

Creates new dag with dag_id from the attached workflow.cwl file or its compressed content.

	Query Parameters

	
	dag_id (string) – Dag identifier

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – dag_id, py and cwl file locations of a created dag.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request is malformed.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	cwl_path (string) – (required)

	dag_id (string) – (required)

	dag_path (string) – (required)

	
GET /dag_runs

	Returns list of dag_runs by dag_id, run_id, execution_date, state.

Runs airflow task_state dag_id, task_id, execution_date for every task of dag_run from airflow list_dag_runs dag_id

	Query Parameters

	
	dag_id (string) – Dag identifier

	run_id (string) – Run identifier

	execution_date (string) – Execution date

	state (string) – Dag run state

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Filtered by dag_id, run_id, execution_date, state list of dag_runs.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request is malformed.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	dag_runs[].dag_id (string) – (required)

	dag_runs[].execution_date (string) – (required)

	dag_runs[].progress (integer) – (required)

	dag_runs[].run_id (string) – (required)

	dag_runs[].start_date (string) – (required)

	dag_runs[].state (string) – Dag run state (required)

	dag_runs[].tasks[].id (string) –

	dag_runs[].tasks[].state (string) – Task state

	
POST /dag_runs

	Creates new dag_run for dag_id with optional run_id and conf

Creates new_dag run for dag_id with optional run_id and conf

	Query Parameters

	
	dag_id (string) – Dag identifier

	run_id (string) – Run identifier

	conf (string) – Run configuration (JSON-formatted string)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Reference information about created dag_run.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request is malformed.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	dag_id (string) – (required)

	execution_date (string) – (required)

	run_id (string) – (required)

	start_date (string) – (required)

	state (string) – Dag run state (required)

	
POST /dags/dag_runs

	Combined logic from /dags and /dag_runs POSTs

	Creates new dag with dag_id from the attached workflow.cwl file or its compressed content.
Either workflow or workflow_content should be provided.
dag_id should follow the naming rule “cwlid-commitsha”, otherwise outdated dags won’t be deleted.

	Tries to delete all previous dag_runs for the provided dag_id and run_id, which also includes
- stopping all running tasks for the current dag_id and run_id
- removing correspondent temporary data
- cleaning up correspondent records in DB
- removing outdated dags for the same cwlid if no running dag_runs were found for them

	Creates new dag_run for dag_id with run_id and optional conf

	Query Parameters

	
	dag_id (string) – Dag identifier, follow the naming rule “cwlid-commitsha”

	run_id (string) – Run identifier

	conf (string) – Run configuration (JSON-formatted string)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Reference information about created dag and dag_run.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request is malformed.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	dag_id (string) – (required)

	execution_date (string) – (required)

	run_id (string) – (required)

	start_date (string) – (required)

	state (string) – Dag run state (required)

	
POST /dags/{dag_id}/dag_runs

	Creates new dag_run for dag_id with optional run_id and conf

Creates new dag_run for dag_id with optional run_id and conf. Corresponds to the original Airflow API to trigger dag_run

	Parameters

	
	dag_id (string) – Dag identifier

	Request JSON Object

	
	conf (string) –

	run_id (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Reference information about created dag_run.

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request is malformed.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	dag_id (string) – (required)

	execution_date (string) – (required)

	run_id (string) – (required)

	start_date (string) – (required)

	state (string) – Dag run state (required)

	
GET /wes/service-info

	Get information about Workflow Execution Service.

May include information related (but not limited to) the workflow descriptor formats, versions supported, the WES API versions supported, and information about general service availability.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request is malformed.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	auth_instructions_url (string) – A web page URL with human-readable instructions on how to get an authorization token for use with a specific WES endpoint.

	contact_info_url (string) – An email address URL (mailto:) or web page URL with contact information for the operator of a specific WES endpoint. Users of the endpoint should use this to report problems or security vulnerabilities.

	default_workflow_engine_parameters[].default_value (string) – The stringified version of the default parameter. e.g. “2.45”.

	default_workflow_engine_parameters[].name (string) – The name of the parameter

	default_workflow_engine_parameters[].type (string) – Describes the type of the parameter, e.g. float.

	supported_filesystem_protocols[] (string) –

	supported_wes_versions[] (string) –

	system_state_counts (object) – The system statistics, key is the statistic, value is the count of runs in that state. See the State enum for the possible keys.

	tags (object) – A key-value map of arbitrary, extended metadata outside the scope of the above but useful to report back

	workflow_engine_versions (object) – The engine(s) used by this WES service, key is engine name (e.g. Cromwell) and value is version

	workflow_type_versions (object) – A map with keys as the workflow format type name (currently only CWL and WDL are used although a service may support others) and value is a workflow_type_version object which simply contains an array of one or more version strings

	
GET /wes/runs

	List the workflow runs.

This list should be provided in a stable ordering. (The actual ordering is implementation dependent.) When paging through the list, the client should not make assumptions about live updates, but should assume the contents of the list reflect the workflow list at the moment that the first page is requested. To monitor a specific workflow run, use GetRunStatus or GetRunLog.

	Query Parameters

	
	page_size (integer) – OPTIONAL The preferred number of workflow runs to return in a page. If not provided, the implementation should use a default page size. The implementation must not return more items than page_size, but it may return fewer. Clients should not assume that if fewer than page_size items are returned that all items have been returned. The availability of additional pages is indicated by the value of next_page_token in the response.

	page_token (string) – OPTIONAL Token to use to indicate where to start getting results. If unspecified, return the first page of results.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – List of the workflow runs

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request is malformed.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	next_page_token (string) – A token which may be supplied as page_token in workflow run list request to get the next page of results. An empty string indicates there are no more items to return.

	runs[].run_id (string) – (required)

	runs[].state (string) –
	UNKNOWN: The state of the task is unknown. This provides a safe default for messages where this field is missing, for example, so that a missing field does not accidentally imply that the state is QUEUED.

	
POST /wes/runs

	Run a workflow.

This endpoint creates a new workflow run and returns a RunId to monitor its progress. The workflow_attachment array may be used to upload files that are required to execute the workflow, including the primary workflow, tools imported by the workflow, other files referenced by the workflow, or files which are part of the input. The implementation should stage these files to a temporary directory and execute the workflow from there. These parts must have a Content-Disposition header with a “filename” provided for each part. Filenames may include subdirectories, but must not include references to parent directories with “..” – implementations should guard against maliciously constructed filenames. The workflow_url is either an absolute URL to a workflow file that is accessible by the WES endpoint, or a relative URL corresponding to one of the files attached using workflow_attachment. The workflow_params JSON object specifies input parameters, such as input files. The exact format of the JSON object depends on the conventions of the workflow language being used. Input files should either be absolute URLs, or relative URLs corresponding to files uploaded using workflow_attachment. The WES endpoint must understand and be able to access URLs supplied in the input. This is implementation specific. The workflow_type is the type of workflow language and must be “CWL” or “WDL” currently (or another alternative supported by this WES instance). The workflow_type_version is the version of the workflow language submitted and must be one supported by this WES instance. See the RunRequest documentation for details about other fields.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request is malformed.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	run_id (string) – workflow run ID

	
GET /wes/runs/{run_id}

	Get detailed info about a workflow run.

This endpoint provides detailed information about a given workflow run. The returned result has information about the outputs produced by this workflow (if available), a log object which allows the stderr and stdout to be retrieved, a log array so stderr/stdout for individual tasks can be retrieved, and the overall state of the workflow run (e.g. RUNNING, see the State section).

	Parameters

	
	run_id (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Detailed info about a workflow run.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested workflow run not found.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	outputs (object) – The outputs from the workflow run.

	request.tags (object) – OPTIONAL
A key-value map of arbitrary metadata outside the scope of workflow_params but useful to track with this run request

	request.workflow_engine_parameters (object) – OPTIONAL Additional parameters can be sent to the workflow engine using this field. Default values for these parameters can be obtained using the ServiceInfo endpoint.

	request.workflow_params (object) – REQUIRED
The workflow run parameterizations (JSON encoded), including input and output file locations

	request.workflow_type (string) – REQUIRED
The workflow descriptor type, must be “CWL” or “WDL” currently (or another alternative supported by this WES instance)

	request.workflow_type_version (string) – REQUIRED
The workflow descriptor type version, must be one supported by this WES instance

	request.workflow_url (string) – REQUIRED The workflow CWL or WDL document. When workflow_attachments is used to attach files, the workflow_url may be a relative path to one of the attachments.

	run_id (string) – workflow run ID

	run_log.cmd[] (string) –

	run_log.end_time (string) – When the command stopped executing (completed, failed, or cancelled), in ISO 8601 format “%Y-%m-%dT%H:%M:%SZ”

	run_log.exit_code (integer) – Exit code of the program

	run_log.name (string) – The task or workflow name

	run_log.start_time (string) – When the command started executing, in ISO 8601 format “%Y-%m-%dT%H:%M:%SZ”

	run_log.stderr (string) – A URL to retrieve standard error logs of the workflow run or task. This URL may change between status requests, or may not be available until the task or workflow has finished execution. Should be available using the same credentials used to access the WES endpoint.

	run_log.stdout (string) – A URL to retrieve standard output logs of the workflow run or task. This URL may change between status requests, or may not be available until the task or workflow has finished execution. Should be available using the same credentials used to access the WES endpoint.

	state (string) –
	UNKNOWN: The state of the task is unknown. This provides a safe default for messages where this field is missing, for example, so that a missing field does not accidentally imply that the state is QUEUED.

	task_logs[].cmd[] (string) –

	task_logs[].end_time (string) – When the command stopped executing (completed, failed, or cancelled), in ISO 8601 format “%Y-%m-%dT%H:%M:%SZ”

	task_logs[].exit_code (integer) – Exit code of the program

	task_logs[].name (string) – The task or workflow name

	task_logs[].start_time (string) – When the command started executing, in ISO 8601 format “%Y-%m-%dT%H:%M:%SZ”

	task_logs[].stderr (string) – A URL to retrieve standard error logs of the workflow run or task. This URL may change between status requests, or may not be available until the task or workflow has finished execution. Should be available using the same credentials used to access the WES endpoint.

	task_logs[].stdout (string) – A URL to retrieve standard output logs of the workflow run or task. This URL may change between status requests, or may not be available until the task or workflow has finished execution. Should be available using the same credentials used to access the WES endpoint.

	
POST /wes/runs/{run_id}/cancel

	Cancel a running workflow.

	Parameters

	
	run_id (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – RunId

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested workflow run wasn”t found.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	run_id (string) – workflow run ID

	
GET /wes/runs/{run_id}/status

	Get quick status info about a workflow run.

This provides an abbreviated (and likely fast depending on implementation) status of the running workflow, returning a simple result with the overall state of the workflow run (e.g. RUNNING, see the State section).

	Parameters

	
	run_id (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Status info about a workflow run.

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The request is unauthorized.

	403 Forbidden [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The requester is not authorized to perform this action.

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested workflow run wasn”t found.

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – An unexpected error occurred.

	Response JSON Object

	
	run_id (string) – (required)

	state (string) –
	UNKNOWN: The state of the task is unknown. This provides a safe default for messages where this field is missing, for example, so that a missing field does not accidentally imply that the state is QUEUED.

_images/trigger_2.jpg
Airflow DAGs Data Profiling v Browse v Admin v Docs v About v

Trigger DAG: bam-bedgraph-bigwig

Configuration JSON (Optional)

"location": "/Users/tester/data/inputs/chr_name_length.txt"
b
"scale": 1
}
}

_images/screen.png
® © ® Q¢ Airflow - DAGs X +

& C ©® localhost:8080/admin/airflow/graph?dag_id=star-index&execution_date= Q Y S e @ 7 » !

Airflow DAGs Data Profiling v Browse v Admin v Docs v About v

B DAG: star-index

¥ Graph View ® Tree View ol Task Duration Bl Task Tries A Landing Times = Gantt

I Base dater| 2020-07-10 03:56:28 Number of runs: | 25 v | Run:| 567c9970-4132-45ad-b86e-841b48fb3b0f Vv Layout: Left->Right V| Go | Search for.

Details 4 Code O Trigger DAG 2 Refresh ® Delete

(GwLJobDispatcher) (CWLJobGatherer) (CWLStepOperator) (success) [running) (failed) ' skipped [upstream_failed] (up_for_reschedule | | up_for_retry| [queued) no_status

CWLJobDispatcher I—{ star_generate_indices H CWLJobGatherer]

_images/trigger_1.jpg
Airflow DAGs = Data Profiling v

Browse v

Admin v Docs v

About v

DAGs

(3] DAG
(] m bam-bedgraph-
bigwig

‘ () ”

Show Paused DAGs

Schedule

Owner

airflow

Recent Tasks @

©

Search:

Last Run © DAG Runs ©

2020-07-12 02:54 @ @

Links
*hRAE

Showing 1 to 1 of 1 entries

ECO

_static/minus.png

_static/plus.png

_static/file.png

_images/docker.png
Preferences

=% General

I® Resources

ADVANCED
® FILE SHARING
PROXIES

NETWORK

4@ Docker Engine
>. Command Line

Kubernetes

® Docker running

Resources File sharing

These directories (and their subdirectories) can be bind mounted into Docker
containers. You can check the documentation for more details.

/Users
/Volumes
/private

/tmp

® 0 0 0O O

/path/to/exported/directory

Apply & Restart

_images/scheme.jpg
i
|
I

e P
T

CWLDAG

CWLJobDispatcher

CWLStepOperator
CWLStepOperator
CWLStepOperator

CWLStepOperator

CWLStepOperator

CWLJobGatherer

nav.xhtml

 Table of Contents

 		
 Welcome to CWL-Airflow’s documentation!

 		
 Quick start

 		
 How it works

 		
 Keywords

 		
 Concepts

 		
 How to install

 		
 Install requirements

 		
 Ubuntu 18.04.4 (Bionic Beaver)

 		
 macOS 11.0.1 (Big Sur)

 		
 Both Ubuntu and macOS

 		
 Install CWL-airflow

 		
 Download portable version of CWL-airflow

 		
 How to use

 		
 Initial configuration

 		
 Updating airflow.cfg

 		
 Adding a pipeline

