
CWL-Airflow

Jun 29, 2019

Contents:

1 Cite as 3
1.1 Run demo . 3
1.2 How It Works . 6
1.3 Installation . 7
1.4 Using cwl-airflow . 8
1.5 Troubleshooting . 11

i

ii

CWL-Airflow

Python package to extend Apache-Airflow 1.9.0 functionality with CWL v1.0 support.

Contents: 1

https://www.python.org/downloads/release/python-2712/
https://www.python.org/downloads/release/python-352/
https://www.python.org/downloads/release/python-365/
https://github.com/apache/incubator-airflow
http://www.commonwl.org/v1.0/

CWL-Airflow

2 Contents:

CHAPTER 1

Cite as

Kotliar M; Kartashov AV; Barski A (2019): Supporting data for “CWL-Airflow: a lightweight pipeline manager
supporting Common Workflow Language” GigaScience Database. http://dx.doi.org/10.5524/100618

1.1 Run demo

1.1.1 Locally

We assume that you have already installed and properly configured python, latest pip, latest setuptools and docker
that has access to pull images from the DockerHub. If something is missing or should be updated refer to the Installa-
tion or Troubleshooting sections.

1. Install cwl-airflow

$ pip install cwl-airflow==1.0.16 --find-links https://michael-kotliar.github.io/
→˓cwl-airflow-wheels/ # --user

--user - explained in Installation section

2. Init configuration

$ cwl-airflow init

3. Run demo

$ cwl-airflow demo --auto

For every submitted workflow you will get the following information

CWL-Airflow demo mode
Process demo workflow 1/3
Load workflow
- workflow: # path from where we load the workflow file

(continues on next page)

3

http://dx.doi.org/10.5524/100618
https://hub.docker.com/

CWL-Airflow

(continued from previous page)

- job: # path from where we load the input parameters file
- uid: # unique identifier for the submitted job
Save job file as
- # path where we save submitted job for CWL-Airflow to run

uid - the unique identifier used for DAG ID and output folder name generation.

4. When all demo wokrflows are submitted the program will provide you with the link for Airflow web interface
(by default it is accessible from your localhost:8080). It may take some time (usually less then half a minute)
for Airflow web interface to load and display all the data.

5. On completion the workflow results will be saved in the current folder.

Airflow
web interface

1.1.2 VirtualBox

In order to run CWL-Airflow virtual machine you have to install Vagrant and VirtualBox. The host machine should
have access to the Internet, at least 8 CPUs and 16 GB of RAM.

1. Clone CWL-Airflow repository

$ git clone https://github.com/Barski-lab/cwl-airflow

2. Chose one of three possible configurations to run

Single node

$ cd ./cwl-airflow/vagrant/local_executor

Celery Cluster of 3 nodes (default queue)

$ cd ./cwl-airflow/vagrant/celery_executor/default_queue

4 Chapter 1. Cite as

http://127.0.0.1:8080/admin/
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads

CWL-Airflow

Celery Cluster of 4 nodes (default + advanced queues)

$ cd ./cwl-airflow/vagrant/celery_executor/custom_queue

3. Start virtual machine

$ vagrant up

Vagrant will pull the latest virtual machine image (about 3.57 GB) from Vagrant Cloud. When started the
following folders will be created on the host machine in the current directory.

.vagrant
airflow

dags
cwl_dag.py # creates DAGs from CWLs

demo
cwl

subworkflows
tools
workflows # demo workflows

chipseq-se.cwl
super-enhancer.cwl
xenbase-rnaseq-se.cwl

data # input data for demo workflows
job # sample job files for demo workflows

chipseq-se.json
super-enhancer.json
xenbase-rnaseq-se.json

jobs # folder for submitted job files
results # folder for workflow outputs
temp # folder for temporary data

4. Connect to running virtual machine through ssh

$ vagrant ssh master

5. Submit all demo workflows for execution

$ cd /home/vagrant/airflow/results
$ cwl-airflow demo --manual

For every submitted workflow you will get the following information

CWL-Airflow demo mode
Process demo workflow 1/3
Load workflow
- workflow: # path from where we load the workflow file
- job: # path from where we load the input parameters file
- uid: # unique identifier for the submitted job
Save job file as
- # path where we save submitted job for CWL-Airflow to run

uid - the unique identifier used for DAG ID and output folder name generation.

6. Open Airflow web interface (localhost:8080) and, if multi-node configuration is run, Celery Flower Monitoring
Tool (localhost:5555). It might take up to 20 seconds for Airflow web interface to display all newly added
workflows.

1.1. Run demo 5

https://app.vagrantup.com/michael_kotliar/boxes/cwl-airflow
http://127.0.0.1:8080/admin/
http://127.0.0.1:5555

CWL-Airflow

7. On completion, you can view workflow execution results in the /home/vagrant/airflow/results
folder of the Virtual Machine or in ./airflow/results folder on your host machine.

8. Stop ssh connection to the virtual machine by pressing ctlr+D and then run one of the following commands

$ vagrant halt # stop virtual machines

or

$ vagrant destroy # remove virtual machines
$ rm -rf ./airflow .vagrant # remove created folders

Dashboard
of the Celery monitoring tool Flower

1.2 How It Works

1.2.1 Key concepts

1. CWL descriptor file - YAML or JSON file to describe the workflow inputs, outputs and steps. File should be
compatible with CWL v1.0 specification

2. Job file - YAML or JSON file to set the values for the wokrflow inputs. For cwl-airflow to function properly the
Job file should include 3 mandatory and one optional fields:

• workflow - mandatory field to specify the absolute path to the CWL descriptor file

• output_folder - mandatory field to specify the absolute path to the folder where all the output files should
be moved after successful workflow execution

• tmp_folder - optional field to specify the absolute path to the folder for storing intermediate results. After
workflow execution this folder will be deleted.

• uid - mandatory field that is used for generating DAG’s unique identifier.

3. DAG - directed acyclic graph that describes the workflow structure.

4. Jobs folder - folder to keep all Job files scheduled for execution or the ones that have already been processed.
The folder’s location is set as jobs parameter of cwl section in Airflow configuration file.

6 Chapter 1. Cite as

CWL-Airflow

1.2.2 What’s inside

To build a workflow cwl-airflow uses three basic classes:

• CWLStepOperator - executes a separate workflow step

• JobDispatcher - serializes the Job file and provides the worflow with input data

• JobCleanup - returns the calculated results to the output folder

A set of CWLStepOperators, JobDispatcher and JobCleanup are combined in CWLDAG that defines a graph to reflect
the workflow steps, their relationships and dependencies. Automatically generated cwl_dag.py script is placed in the
DAGs folder. When Airflow Scheduler loads DAGs from the DAGs folder, the cwl_dag.py script parses all the Job files
from the Jobs folder and creates DAGs for each of them. Each DAG has a unique DAG ID that is formed accodring
to the following scheme: CWL descriptor file basename-Job file basename-uid field from
the Job file

CWL-
Airflow diagram

1.3 Installation

1.3.1 Requirements

Ubuntu 16.04.4 (Xenial Xerus)

• python 2.7 or 3.5 (tested on the system Python 2.7.12 and 3.5.2)

• docker (follow the link to install Docker on Ubuntu)

Don’t forget to add your user to the docker group and then to log out and log back in so that your group
membership is re-evaluated.

• python-dev (or python3-dev if using Python 3.5)

1.3. Installation 7

https://docs.docker.com/install/linux/docker-ce/ubuntu/

CWL-Airflow

sudo apt-get install python-dev # python3-dev

python-dev is required in case your system needs to compile some python packages during the installation. We
have built python wheels for most of such packages and provided them through –find-links argument while
installing cwl-airflow. Nevertheless in case of installation problems you might still be required to install this
dependency.

macOS 10.13.5 (High Sierra)

• python 2.7 or 3.6 (tested on the system Python 2.7.10 and brewed Python 2.7.15 / 3.6.5; 3.7.0 is not supported)

• docker (follow the link to install Docker on Mac)

• Apple Command Line Tools

xcode-select --install

Click Install on the pop up window when it appears, follow the instructions. Apple Command Line Tools are
required in case your system needs to compile some python packages during the installation. We have built
python wheels for most of such packages and provided them through –find-links argument while installing cwl-
airflow. Nevertheless in case of installation problems you might still be required to install this dependency.

Both Ubuntu and macOS

• pip (follow the link to install the latest stable Pip)

Consider using --user if you encounter permission problems

• setuptools (tested on setuptools 40.0.0)

pip install -U setuptools # --user

--user - optional parameter to install all the packages into your HOME directory instead of the system Python
directories. It will be helpful if you don’t have enough permissions to install new Python packages. You might
also need to update your PATH variable in order to have access to the installed packages (an easy way to do it
is described in Troubleshooting section). If installing on macOS brewed Python --user should not be used
(explained here)

1.3.2 Install cwl-airflow

$ pip install cwl-airflow==1.0.16 --find-links https://michael-kotliar.github.io/cwl-
→˓airflow-wheels/ # --user

--find-links - using pre-compiled wheels from Cwl-Airflow-Wheels repository allows to avoid installing Xcode
for macOS users and python[3]-dev for Ubuntu users

1.4 Using cwl-airflow

1.4.1 Configuration

Before using cwl-airflow it should be initialized with the default configuration by running the command

8 Chapter 1. Cite as

https://docs.docker.com/docker-for-mac/install/
https://pip.pypa.io/en/stable/installing/
https://docs.brew.sh/Homebrew-and-Python
https://michael-kotliar.github.io/cwl-airflow-wheels/

CWL-Airflow

$ cwl-airflow init

Optional parameters:

Consider using -r 5 -w 4 to make Airflow Webserver react faster on all newly created DAGs

If you update Airflow configuration file manually (default location is ~/airflow/airflow.cfg), make sure to run cwl-
airflow init command to apply all the changes, especially if core/dags_folder or cwl/jobs parameters from the config-
uration file are changed.

1.4.2 Submitting new job

To submit new CWL descriptor and Job files to cwl-airflow run the following command

cwl-airflow submit WORKFLOW JOB

Optional parameters:

Arguments -o, -t and -u doesn’t overwrite the values from the Job file set in the fields output_folder, tmp_folder
and uid correspondingly. The meaning of these fields is explaned in How It Works section.

The submit command will resolve all relative paths from Job file adding mandatory fields workflow, output_folder and
uid (if not provided) and will copy Job file to the Jobs folder. The CWL descriptor file and all input files referenced
in the Job file should not be moved or deleted while workflow is running. The submit command will not execute
submitted workflow unless -r argument is provided. Otherwise, make sure that Airflow Scheduler (and optionally
Airflow Webserver) is running. Note, that -r argument was added only to comply with the interface through which
CWL community runs it’s conformance tests. So it’s more preferable to execute submitted workflow with Airflow
Scheduler, especially if you are planning to use LocalExecutor instead of default SequentialExecutor.

Depending on your Airflow configuration it may require some time for Airflow Scheduler and Webserver to pick
up new DAGs. Consider using cwl-airflow init -r 5 -w 4 to make Airflow Webserver react faster on all
newly created DAGs.

To start Airflow Scheduler (don’t run it if cwl-airflow submit is used with -r argument)

airflow scheduler

To start Airflow Webserver (by default it is accessible from your localhost:8080)

airflow webserver

Please note that both Airflow Scheduler and Webserver can be adjusted through the configuration file (default location
is ~/airflow/airflow.cfg). Refer to the official documentation

1.4.3 Demo mode

• To get the list of the available demo workflows

$ cwl-airflow demo --list

• To submit the specific demo workflow from the list (workflow will not be run until Airflow Scheduler is started
separately)

$ cwl-airflow demo super-enhancer.cwl

1.4. Using cwl-airflow 9

http://127.0.0.1:8080/admin/
https://airflow.apache.org/howto/set-config.html

CWL-Airflow

Depending on your Airflow configuration it may require some time for Airflow Scheduler and Webserver to pick
up new DAGs. Consider using cwl-airflow init -r 5 -w 4 to make Airflow Webserver react faster
on all newly created DAGs.

• To submit all demo workflows from the list (workflows will not be run until Airflow Scheduler is started sepa-
rately)

$ cwl-airflow demo --manual

Before submitting demo workflows the Jobs folder will be automatically cleaned.

• To execute all available demo workflows (automatically starts Airflow Scheduler and Airflow Webserver)

$ cwl-airflow demo --auto

Optional parameters:

1.4.4 Running sample ChIP-Seq-SE workflow

This ChIP-Seq-SE workflow is a CWL version of a Python pipeline from BioWardrobe. It starts by extracting an input
FASTQ file (if it was compressed). Next step runs BowTie to perform alignment to a reference genome, resulting in
an unsorted SAM file. The SAM file is then sorted and indexed with Samtools to obtain a BAM file and a BAI index.
Next MACS2 is used to call peaks and to estimate fragment size. In the last few steps, the coverage by estimated
fragments is calculated from the BAM file and is reported in bigWig format. The pipeline also reports statistics, such
as read quality, peak number and base frequency, as long as other troubleshooting information using tools such as
Fastx-toolkit and Bamtools.

To get sample workflow with input data

$ git clone --recursive https://github.com/Barski-lab/ga4gh_challenge.git --branch v0.
→˓0.5
$./ga4gh_challenge/data/prepare_inputs.sh

Please, be patient it may take some time to clone submodule with input data. Runing the script prepare_inputs.sh will
uncompress input FASTQ file.

To submit worflow for execution

cwl-airflow submit ga4gh_challenge/biowardrobe_chipseq_se.cwl ga4gh_challenge/
→˓biowardrobe_chipseq_se.yaml

To start Airflow Scheduler (don’t run it if cwl-airflow submit is used with -r argument)

airflow scheduler

To start Airflow web interface (by default it is accessible from your localhost:8080)

airflow webserver

Pipeline was tested with

• macOS 10.13.6 (High Sierra)

• Docker

– Engine: 18.06.0-ce

– Machine: 0.15.0

– Preferences

10 Chapter 1. Cite as

https://barski-lab.github.io/ga4gh_challenge/
https://github.com/Barski-lab/biowardrobe/wiki
http://bowtie-bio.sourceforge.net/index.shtml
http://samtools.sourceforge.net/
https://github.com/taoliu/MACS/wiki
http://hannonlab.cshl.edu/fastx_toolkit/
https://github.com/pezmaster31/bamtools
http://127.0.0.1:8080/admin/

CWL-Airflow

* CPUs: 4

* Memory: 2.0 GiB

* Swap: 1.0 GiB

• Elapsed time: 23 min (may vary depending on you Internet connection bandwidth, especially when pipeline is
run for the first time and all Docker images are being fetched from DockerHub)

1.5 Troubleshooting

Most of the problems are already handled by cwl-airflow itself. User is provided with the full explanation and ways to
correct them through the console output. Additional information regarding the failed workflow steps, can be found in
the task execution logs that are accessible through Airflow Webserver UI.

Common errors and ways to fix them

• cwl-airflow is not found

Perhaps, you have installed it with –user option and your PATH variable doesn’t include your user based Python
bin folder. Update PATH with the following command

export PATH="$PATH:`python -m site --user-base`/bin"

• Fails to install on the latest Python 3.7.0

Unfortunatelly Apache-Airflow 1.9.0 cannot be properly installed on the latest Python 3.7.0. Consider using
Python 3.6 or 2.7 instead.

macOS users can install Python 3.6.5 (instead of the latest Python 3.7.0) with the following command (explained
here)

brew install https://raw.githubusercontent.com/Homebrew/homebrew-core/
→˓f2a764ef944b1080be64bd88dca9a1d80130c558/Formula/python.rb

• Fails to compile ruamel.yaml

Perhaps, you should update your setuptools. Consider using –user if necessary. If installing on macOS brewed
Python –user should not be used (explained here)

pip install -U setuptools # --user

--user - explained in Installation section

• Docker is unable to pull images from the Internet

If you are using proxy, your Docker should be configured properly too. Refer to the official documentation

• Docker is unable to mount directory

For macOS docker has a list of directories that it’s allowed to mount by default. If your input files are located in
the directories that are not included in this list, you are better of either changing the location of input files and
updating your Job file or adding this directories into Docker configuration Preferences / File Sharing.

• Airflow Webserver displays missing DAGs

If some of the Job files have been manually deleted, they will be still present in Airflow database, hence they
will be displayed in Webserver’s UI. Sometimes you may still see missing DAGs because of the inertness of
Airflow Webserver UI.

1.5. Troubleshooting 11

https://stackoverflow.com/a/51125014/8808721
https://docs.brew.sh/Homebrew-and-Python
https://docs.docker.com/config/daemon/systemd/#httphttps-proxy

CWL-Airflow

• Airflow Webserver randomly fails to display some of the pages

When new DAG is added Airflow Webserver and Scheduler require some time to update their states. Con-
sider using cwl-airflow init -r 5 -w 4 to make Airflow Webserver react faster for all newly created
DAGs. Or manualy update Airflow configuration file (default location is ~/airflow/airflow.cfg) and restart both
Webserver and Scheduler. Refer to the official documentation here

• Workflow execution fails

Make sure that CWL descriptor and Job files are correct. You can always check them with cwltool (trusted
version 1.0.20180622214234)

cwltool --debug WORKFLOW JOB

12 Chapter 1. Cite as

https://airflow.apache.org/configuration.html

	Cite as
	Run demo
	How It Works
	Installation
	Using cwl-airflow
	Troubleshooting

